Search results for "Algebraic variety"

showing 10 items of 24 documents

Infinitesimal deformations of double covers of smooth algebraic varieties

2003

The goal of this paper is to give a method to compute the space of infinitesimal deformations of a double cover of a smooth algebraic variety. The space of all infinitesimal deformations has a representation as a direct sum of two subspaces. One is isomorphic to the space of simultaneous deformations of the branch locus and the base of the double covering. The second summand is the subspace of deformations of the double covering which induce trivial deformations of the branch divisor. The main result of the paper is a description of the effect of imposing singularities in the branch locus. As a special case we study deformations of Calabi--Yau threefolds which are non--singular models of do…

14B07; 14J3014J30Direct sum14B07General MathematicsInfinitesimalMathematical analysisAlgebraic varietySymbolic computationLinear subspaceequisingular deformationsMathematics - Algebraic GeometryMathematics::Algebraic GeometryFOS: MathematicsProjective spaceGravitational singularityLocus (mathematics)Algebraic Geometry (math.AG)double coveringsMathematics
researchProduct

Algebraicity of analytic maps to a hyperbolic variety

2018

Let $X$ be an algebraic variety over $\mathbb{C}$. We say that $X$ is Borel hyperbolic if, for every finite type reduced scheme $S$ over $\mathbb{C}$, every holomorphic map $S^{an}\to X^{an}$ is algebraic. We use a transcendental specialization technique to prove that $X$ is Borel hyperbolic if and only if, for every smooth affine curve $C$ over $\mathbb{C}$, every holomorphic map $C^{an}\to X^{an}$ is algebraic. We use the latter result to prove that Borel hyperbolicity shares many common features with other notions of hyperbolicity such as Kobayashi hyperbolicity.

Mathematics - Differential GeometryPure mathematicsMathematics::Dynamical SystemsGeneral Mathematics010102 general mathematicsHolomorphic functionAlgebraic varietyType (model theory)01 natural sciencesMathematics::Geometric Topology010101 applied mathematicsMathematics - Algebraic GeometryDifferential Geometry (math.DG)Scheme (mathematics)FOS: MathematicsAffine transformationTranscendental number0101 mathematicsVariety (universal algebra)Algebraic numberAlgebraic Geometry (math.AG)32Q45Mathematics
researchProduct

ON AUTOMORPHISMS OF GENERALIZED ALGEBRAIC-GEOMETRY CODES.

2007

Abstract We consider a class of generalized algebraic-geometry codes based on places of the same degree of a fixed algebraic function field over a finite field F / F q . We study automorphisms of such codes which are associated with automorphisms of F / F q .

Algebraic function fieldDiscrete mathematicsAlgebraic cycleFinite fieldFunction field of an algebraic varietyAlgebra and Number TheoryAutomorphisms of the symmetric and alternating groupsAlgebraic extensionAlgebraic geometryAutomorphismMathematics
researchProduct

Smooth structures on algebraic surfaces with cyclic fundamental group

1988

Abelian varietyAlgebraIntersection theorymedicine.medical_specialtyFundamental groupFunction field of an algebraic varietyGeneral MathematicsAlgebraic surfacemedicineSmooth structureAlgebraic geometry and analytic geometryMathematicsInventiones Mathematicae
researchProduct

Algebraic time-reversal operation

1999

International audience; We analyze the implementation of the time-reversal (TR) transformation in the algebraic approach to tetrahedral local molecules through the chain of groups U(5) U(4) K(4) = A(4) ^ S(4) S(4) Td. We determine the general form of the TR operation using a purely algebraic realization, based exclusively on the requirement that the irreducible representations must not be changed under the time inversion symmetry. As a result we can determine the TR behavior of purely algebraic operators.

Pure mathematicsFunction field of an algebraic variety[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]010304 chemical physics03.65.Fd Algebraic methods - 31.15.Hz Group theoryAlgebraic extensionDimension of an algebraic variety010402 general chemistry01 natural sciencesAtomic and Molecular Physics and Optics0104 chemical sciencesAlgebraic cycle[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Algebraic methodsQuantum mechanics0103 physical sciencesAlgebraic surfaceReal algebraic geometryAlgebraic functionGroup theoryDifferential algebraic geometryMathematicsThe European Physical Journal D
researchProduct

On many-sorted algebraic closure operators

2004

A theorem of Birkhoff-Frink asserts that every algebraic closure operator on an ordinary set arises, from some algebraic structure on the set, as the corresponding generated subalgebra operator. However, for many-sorted sets, i.e., indexed families of sets, such a theorem is not longer true without qualification. We characterize the corresponding many-sorted closure operators as precisely the uniform algebraic operators. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Algebraic cycleDiscrete mathematicsGeneral MathematicsAlgebraic surfaceReal algebraic geometryAlgebraic extensionDimension of an algebraic varietyAlgebraic functionOperator theoryAlgebraic closureMathematicsMathematische Nachrichten
researchProduct

The Period Isomorphism

2017

The aim of this section is to define well-behaved isomorphisms between singular and de Rham cohomology of algebraic varieties.

Pure mathematicsCondensed Matter::OtherAlgebraic varietyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMathematics::Algebraic TopologyMathematics::Algebraic GeometryTensor productSection (category theory)Mathematics::K-Theory and HomologyDe Rham cohomologyIsomorphismCategory theoryPeriod (music)Mathematics
researchProduct

Finiteness properties of pseudo-hyperbolic varieties

2019

Motivated by Lang-Vojta's conjecture, we show that the set of dominant rational self-maps of an algebraic variety over a number field with only finitely many rational points in any given number field is finite by combining Amerik's theorem for dynamical systems of infinite order with properties of Prokhorov-Shramov's notion of quasi-minimal models. We also prove a similar result in the geometric setting by using again Amerik's theorem and Prokhorov-Shramov's notion of quasi-minimal model, but also Weil's regularization theorem for birational self-maps and properties of dynamical degrees. Furthermore, in the geometric setting, we obtain an analogue of Kobayashi-Ochiai's finiteness result for…

Pure mathematicsDynamical systems theoryGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Type (model theory)01 natural sciencesSurjective functionMathematics - Algebraic Geometry0103 physical sciencesFOS: MathematicsNumber Theory (math.NT)0101 mathematicsMathematics - Dynamical Systems[MATH]Mathematics [math]Algebraic Geometry (math.AG)MathematicsConjectureMathematics - Number Theory010102 general mathematicsOrder (ring theory)Algebraic varietyAlgebraic number field[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]Regularization (physics)010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct

General Theory: Algebraic Point of View

2009

It is convenient to divide our study of pip-spaces into two stages. In the first one, we consider only the algebraic aspects. That is, we explore the structure generated by a linear compatibility relation on a vector space V , as introduced in Section I.2, without any other ingredient. This will lead us to another equivalent formulation, in terms of particular coverings of V by families of subspaces. This first approach, purely algebraic, is the subject matter of the present chapter. Then, in a second stage, we introduce topologies on the so-called assaying subspaces \(\{V_r \}\). Indeed, as already mentioned in Section I.2, assuming the partial inner product to be nondegenerate implies tha…

Section (fiber bundle)Discrete mathematicsAlgebraic cycleProduct (mathematics)Real algebraic geometryAlgebraic extensionAlgebraic closureMathematicsSingular point of an algebraic varietyDual pair
researchProduct

Quasi-Projective Varieties

2000

We have developed the theory of affine and projective varieties separately. We now introduce the concept of a quasi-projective variety, a term that encompasses both cases. More than just a convenience, the notion of a quasi-projective variety will eventually allow us to think of an algebraic variety as an intrinsically defined geometric object, free from any particular embedding in affine or projective space.

AlgebraComputer scienceAffine spaceEmbeddingProjective spaceAlgebraic varietyAffine transformationVariety (universal algebra)Projective testProjective variety
researchProduct